1. 导入boston房价数据集
from sklearn.datasets import load_bostonboston=load_boston()boston.keys()
print(boston.DESCR)
boston.data.shape
import pandas as pdpd.DataFrame(boston.data)
2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
import matplotlib.pyplot as pltx=boston.data[:,5]y=boston.targetplt.figure(figsize=(10,6))plt.scatter(x,y)plt.plot(x,9.1*x-34,'g')plt.show()
from sklearn.linear_model import LinearRegressionlineR=LinearRegression()lineR.fit(x.reshape(-1,1),y)lineR.coef_
lineR.intercept_
3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。
from sklearn.linear_model import LinearRegressionlineR=LinearRegression()lineR.fit(boston.data,y)w=lineR.coef_w
b=lineR.intercept_b
import matplotlib.pyplot as pltx=boston.data[:,12].reshape(-1,1)y=boston.targetplt.figure(figsize=(10,6))plt.scatter(x,y)from sklearn.linear_model import LinearRegressionlineR=LinearRegression()lineR.fit(x,y)y_pred=lineR.predict(x)plt.plot(x,y_pred)print(lineR.coef_,lineR.intercept_)plt.show()
4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示
from sklearn.preprocessing import PolynomialFeaturespoly=PolynomialFeatures(degree=2)x_poly=poly.fit_transform(x)x_poly
from sklearn.preprocessing import PolynomialFeaturespoly=PolynomialFeatures(degree=2)x_poly=poly.fit_transform(x)lrp=LinearRegression()lrp.fit(x_poly,y)y_plot_pred=lrp.predict(x_poly)plt.scatter(x,y)plt.scatter(x,y_pred)plt.scatter(x,y_plot_pred)plt.show()